
ACADIA ’96 Proceedings, Tucson, AZ, 31 October–3 November, 1996

Design Modeling With Shape Algebras and Formal Logic

Scott C. Chase
National Institute of Standards and Technology

Manufacturing Engineering Laboratory

ABSTRACT

A new method of describing designs by combining the paradigms of shape algebras and predicate logic
representations is presented. Representing shapes and spatial relations in logic provides a natural, intuitive method of
developing complete computer systems for reasoning about designs. The advantages of shape algebra formalisms
over more traditional representations of geometric objects are discussed. The method employed involves the
definition of a large set of high level design relations from a small set of simple structures and spatial relations.
Examples in architecture and geographic information systems are illustrated.

1  BACKGROUND

The Problem of Predetermination

Research in the development of design modeling systems has identified the need for evolutionary models
which support dynamic schema modification (Eastman et al., 1991). However, the development of current design
systems does not easily support such a goal. They tend to be constructed in a bottom-up manner, with the design of
low level data structures and operations first. This can be seen as a “kit-of-parts” approach, and is often done in
order to develop efficient operations for object manipulation. What this generally does is force the designer/user into
a specific manner of representing and manipulating objects. Thus, the structure of a model must be decided at the
start. Essentially this is akin to the philosophy of reductionism, which considers the universe to be composed of
separate parts which, in various combinations, make up the whole:

It is a natural human tendency to separate a whole into its parts, to categorize and classify, to draw
boundaries between parts, and to define classes on the basis of rigidly defined boundaries.
Boundaries so defined may be useful for some purposes, but they may badly confuse the
accomplishment of other purposes. (Robinove, 1986 p. 15)

As soon as you perceive an object, you draw a line between it and the rest of the world; you divide
the world, artificially, into parts, and you thereby miss the Way. (Hofstadter, 1979 p. 251, in
discussing Zen’s struggle against dualism)

The decision to classify and structure up front may preclude the possibility of other desirable forms and
structures in the future. It is extremely difficult, if not impossible, to anticipate all possible ways in which one might
wish to view or classify parts of a model. This often requires an unmanageable amount of information. The problems
with this approach were among the causes of the failure of early CAD building modeling systems in the 1970’s and
early ’80s, which often required the predetermination of all types of information of interest, and for this information
to be stored in a single model (Eastman, 1978; Hoskins, 1973).

On the other hand, the philosophy of holism considers the universe to be a whole rather than the sum of its
parts. A system which forces no preconceived structure upon the user, but rather, allows one to find all sorts of
emergent features and properties from within the whole, would be extremely desirable. This might enable an easier,
more flexible design development path in a top-down fashion, from the abstract to the specific.
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The algebras of shape (Stiny, 1991) can support both holistic and reductionist views. By considering shapes
as finite sets of elements which can carry fixed properties, a reductionist view is supported. The real power of such
algebras, however, lies in the fact that the elements of a shape and their properties may be defined in such a manner
as to enable the emergence of features which are not apparent in the initial formulation of a shape. In addition, the
generality of their representations, their reliance upon a minimum of structure, and their use in combination can
provide the semantic richness needed for design generation and analysis. The practicality of these algebras has been
demonstrated with their use in shape grammars (Stiny, Gips, 1972), production systems which generate languages of
designs. How these representations support emergence is demonstrated in Section 2.

Shape Grammars in Design

Shape grammars have over the past two decades been shown to be a powerful means of generating and
analyzing languages of designs. A wide variety of grammars have been constructed which encapsulate styles of
designs in areas such as fine arts (Kirsch, Kirsch, 1986), architecture (Flemming, 1987; Heisserman, Woodbury,
1994) and landscape design (Stiny, Mitchell, 1980). Recent work includes the development of grammars which
generate new languages of designs (Knight, 1992; Knight, 1995).

While remaining true to the formal representations, these tend to be paper and pencil exercises. The
representations used tend to describe shapes and spatial relations simply by drawing them, thus limiting much of the
description to non-parametric shapes. With few exceptions, discussion of parametric shapes and grammars has been
limited to natural language descriptions of the conditions placed upon a shape and very general descriptions of rule
application. The dearth of computer implementations can be seen as due to problems of computational complexity.
Because of this, computer implementations of shape grammars (and indeed, design systems in general) have tended
to have many restrictions and simplifications of the formal representations in order to solve the computational
problems, thus limiting their use in practical applications (Chase, 1989; Krishnamurti, 1981; Krishnamurti, Giraud,
1986; Tapia, 1996).

Logic as a Specification Tool

Representing shapes and spatial relations in first order predicate logic provides an easy way to develop
complete computer systems for reasoning about designs. The use of logic provides a natural, intuitive method of
generating precise definitions of parametric shapes and high level spatial relations. Its use as a specification and
programming tool has become widespread over the past two decades, initially with the Prolog language and
continuing with constraint logic programming languages (Benhamou, Colmerauer, 1993). These provide advantages
over traditional procedural programming methods, among those the ability to specify the knowledge to be
encapsulated in a model (description) without the need to specify data manipulation procedures (prescription)
(Kowalski, 1979). The use of logic can facilitate a top-down method of development, from the abstract to the
specific. This is possible because the symbolic abstractions of logic formulations enable one to denote entire classes
of data structures and procedures while ignoring their details. This can be a more natural method of development
than having to deal with often unintuitive formulations.

The use of logic in design is not new; general surveys of how logic may be used in design include (Coyne
et al., 1990) and (Mitchell, 1990). Some examples include its use in shape grammar and reasoning systems (Chase,
1989; Damski, Gero, 1996; Heisserman, Woodbury, 1994; Krishnamurti, 1992; Krishnamurti, Giraud, 1986). The
weaknesses of the shape grammar implementations are in their limitations dues to computational problems; those of
other logic based systems are in their representations of design objects, which—with few exceptions—cannot
support emergent features.

Approach

Rather than attempt to solve all of these problems, we focus here on the representations rather than the
search and control issues inherent in any production system. The approach taken is of modeling designs using spatial
relations based upon shape algebraic representations. This entails the construction of a formal, hierarchical model of
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shape, spatial relations and non-spatial properties from first principles of geometry, topology and logic. The shape
algebra formalism is extended by using logic to make more precise, generalized, parametric definitions of shape and
spatial relations than has been previously possible. These relations can be used to describe designs in more ways
than simply geometrical composition:  they have the potential to represent behavioral, psychological and cultural
issues. The value of such a model and the advantages of the representations used over more traditional ‘kit-of-parts’
models can be demonstrated by the use of these generalized spatial relations for solving typical problems involving
spatial reasoning.

The remainder of the paper is organized as follows. Section 2 offers an introduction to the shape algebraic
representations used and illustrates how they support feature emergence. Section 3 shows how shapes and spatial
relations can be formally defined in logic. Section 4 offers examples from the domains of architectural plans and
geographic information systems. Section 5 discusses the problems inherent in a computer implementation of such a
model, and Section 6 offers some conclusions.

2  SHAPE ALGEBRAS AND EMERGENCE

With a small set of compositional rules, shape grammars can generate a large, rich variety of designs and
can support shape emergence, allowing new shapes to be found in existing compositions. The properties of the
algebras of shape are what provide this richness.

Maximal Line Algebras

Shapes are finite arrangements of basic geometric elements. The types of basic elements we consider here
are points, lines, two dimensional regions, and three dimensional solids. Each has its own algebra in which it can be
manipulated. We describe here algebras of lines and shapes composed of lines.

A line has finite, nonzero length. It may be decomposed into its parts, which consist of other lines
embedded within it. There are an infinite number of lines which may be part of a given line. We define the part-of
relation ≤ to describe this situation, e.g., l1 ≤ l2 means that line l1 is embedded in or part of line l2.

Two collinear lines which overlap in any part or who have an endpoint in common may combine via
reduction rules for + (sum), – (difference) and • (product) to form new lines (Chase, 1989). A shape consists of a set
of lines which are maximal, i.e. no line in the shape contains any parts which are part of any other line in the shape.
Consequently, no two lines in the shape can be combined to form a single line. As shapes are simply finite sets of
maximal lines, the relation ≤ and the operations +, – and • may also be defined for shapes by repeated application of
the reduction rules for lines (Figure 1a). The relation ≤ between shapes is called the subshape relation.

It should be noted that this representation is very different from the shape representations typically used in
vector based computer graphics systems (with the possible exception of brep solid models). There, shapes are often
represented as sets of lines which cannot be further decomposed, i.e. no parts of lines can be easily recognized
(Figure 1b). This difference is significant, as use of the maximal line representation allows the recognition of
emergent subshapes. Here we define an emergent subshape as a subshape containing at least one maximal line which
is not maximal in the original shape. Figures 2 and 3 illustrate this difference. Considering a maximal line
representation, there are 22 instances of Euclidean transformations (compositions of translation, scaling, rotation or
mirroring) of shape A which are subshapes of S in Figure 2. If, instead, we consider A and S as sets of non-
decomposable line segments corresponding to those in the maximal line representation, there are no subsets of
transformations τ of A in S. In order to identify the same subshapes, A and S have to be represented by different sets
of non-decomposable line segments A′ and S′ , using a larger number of line segments (Figure 3). If we wish to find
some other subshape of S′ , we can do so using the maximal line representation, but may need to modify the non-
decomposable line segment representation of S′. For example, the shape B in Figure 3, represented with maximal
lines, is a subshape of S . If, however, it is represented with non-decomposable lines, it is not a subshape of S′. Thus,
with a non-decomposable representation, it is necessary to predict what possible subshapes might be desired before
deciding upon a shape’s representation.

It is this combination of non-predetermination of structure with minimal representation producing
maximum expression which makes the maximal line representation so appealing. In effect, one does not have to
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worry about schema modification, as an infinite number of features can be found at any time during the design
process. With traditional representations, the potential for schema modification is a major concern.

A B C

A + B A - C C - A A • C

A ∪  B A - C C - A A ∩ C

* * *

* * * *

* * * *

C ≤ A+B? yes

C ⊆  A∪ B? no

a)

b)

Figure 1.  Shapes A, B and C composed of lines and results of operations upon them.  a) A, B and
C are represented as sets of maximal lines; b) A, B and C are represented as sets of non-
decomposable line segments. Note:  the symbol * shown here and in other figures represents a
position reference marker for use in comparing two shapes. It and any accompanying text are not
considered part of the shape itself.

A:  4 maximal lines S:  8 maximal lines

τ(A) ≤ S

Figure 2.  The 22 possible subshapes of S that can be produced by transformations of A.
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A':  5 segments

+

12 4

S':  30 segments

** * *

+

14

=

B:  a subshape of S (maximal lines)
      not a subshape of S' (non-decomposable lines)

Figure 3.  Line segments needed for a possible representation of the shapes in Figure 2 using non-
decomposable lines.

Other Algebras

Algebras which support feature emergence in a manner similar to the algebras of maximal lines can be
defined for other geometric objects, namely, points, planar regions (Figure 4), and solids (Stiny, 1991). In addition,
algebras have been defined to support non-geometric attributes of shape, which include material properties, function,
cost, etc. (Stiny, 1992).

In design, there is a strong need for the simultaneous use of multiple representations (Chase, 1993). To that
end, these algebras can combine to produce new algebras of shape containing multiple types of elements, and
grammars written to manipulate shapes in these compound algebras (Stiny, 1992).

**

* ** *

A B

A + B A - B B - A A • B

*

C:  C ≤ B

Figure 4.  Examples of operations in an algebra of planar regions.

3  FORMAL DEFINITIONS OF SHAPE AND SPATIAL RELATIONS

Here, we extend the formal definitions of shape algebras and spatial relations by using the non-graphic
symbolism of logic. In doing so, a solid mathematical foundation is established which enables generalized but
precise definitions of shape and spatial relations applicable to shapes of any dimension and facilitates reasoning
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about these shapes in a design context. This also provides an extensible framework for adding new shape algebras
and spatial relations to capture additional properties of designs.

It is assumed that an underlying data structure is implementable for the geometric description of shape. The
descriptions here of shape and spatial relations deal mainly with the topological properties of shape. We recognize
that the problems of low-level geometric computation have been researched by others and that solutions exist which
are adequate to support investigation of the issues here. The amount of research in computational geometry and
computer graphics over the past thirty years tends to support this argument.

The bulk of the author’s research has been spent in the development of logic specifications for definitions
of shape and a large set of spatial relations. Due to the technical nature of these definitions, only a few simple ones
are illustrated here. Complete, detailed definitions may be found in (Chase, 1996).

Basic Elements

Shapes are composed of finite basic elements (or simply, elements), which are manipulated in algebras Uij,
indicating elements of dimension i in a space of dimension j. For example, U02 and U12 describe, respectively,
points and lines in the plane, U33 describes three dimensional (solid) elements in 3-space.

A basic element in Uij is finite and can be distinguished by its boundary and a descriptor. The boundary
divides the design space between an element’s interior (finite) and its exterior (infinite). It consists of a set of
elements in the algebra of next lowest dimension, e.g., points bound lines, lines bound planes, and so forth. The
descriptor provides additional information about an element, including its carrier, the infinite element in which it is
embedded. Only elements with equal descriptors (considered cohyperplanar) may interact in the operations +, –, •
and the relation ≤. The most common examples of cohyperplanarity are collinearity and coplanarity.

Geometric Relations

Spatial relations useful in design can be developed using the basic constructs of shape definition and shape
operations. The non-graphic symbolism of logic is a powerful tool in extending the formal definitions of shape
algebras and spatial relations.

The basic definitions of shape (by boundaries and descriptors) and shape operations described above are
used to construct definitions for spatial relations which apply to multiple element types. In this way, spatial relations
are parameterized and can apply to shapes in any dimension.

Boundary Relations.   Much of design involves establishing relations between objects based upon their boundaries,
e.g., adjacency and abutting. We illustrate here two such relations, share_boundary and surrounded_by.

A single definition of the relation share_boundary can be constructed for both lines and regions (and
indeed, elements of higher dimension). Two basic elements A and B share a boundary if the product of their
boundaries is non-empty, i.e. their boundaries overlap (Figure 5). It should be noted that the logical descriptions
presented here are notated in an informal manner in order to facilitate reading. Variables are assumed to be
universally quantified unless otherwise specified.

share_boundary(A,B) ↔
boundary(A) • boundary(B) ≠ ∅

For elements A and B of the same type, A is surrounded by B if and only if A is a part of B and they don’t share a
boundary (Figure 6):

surrounded_by(A,B) ↔
A ≤ B & ¬share_boundary(A,B)
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element A element B A and B juxtaposed

U12

U22

* * *

***

Figure 5.  share_boundary relation. The lines (in U12) share a boundary (endpoint); the regions
(U22) share a portion of their boundary lines.

U22U12

Figure 6.  surrounded relation. The bottom line is surrounded by the top one (assuming
collinearity); the smaller region is surrounded by the larger one.

Dependency Network of Relations.  A large set of spatial relations and operations has been constructed by
progressively defining common spatial relations based upon primitive definitions and other relations. With this a
dependency network can be diagrammed which can provide some insight into how spatial relations interact and the
issues involved in a computer implementation of such a network (Figure 7).

It turns out that there is often no one correct way to define a spatial relation, but rather, multiple
possibilities for a definition. How a relation is used in practice can be a factor in how one chooses to define it. Since
the relations are all interrelated in a network containing recursive relations, there may be multiple ways to define
relation A, given relations B, C, etc.

4  APPLICATIONS

Illustrated here are examples from the domains of architecture and geographic information systems, which
demonstrate the relative ease with which the spatial relations and operations described above can be used for
generating and reasoning about designs, including the ability to represent emergent features.

Architectural Floor Plans

As typical representations in architectural design, we illustrate examples of wall centerline generation and
the inference of spaces and emergent subspaces using algebras Ui2 (points, lines and regions in the plane).

Identification of Wall Centerlines.  There has been much research in wall and location identification from plan
drawings. The problem can be quite complex; many different methods have been developed to facilitate this process,
which generally involves techniques such as line following (Koutamanis, 1990) and constraint management to
construct a structural hierarchy of spatial objects such as walls, doors and rooms (Cherneff, 1990). Here, the power
of the shape algebras and the logic specification of relations allows us to easily specify the spatial relations needed
for such interpretations without focusing on control mechanisms.

Figure 8 illustrates spatial relations resulting from a few of the possible configurations of intersecting walls.
A wall segment can be constructed by using two node types as the end conditions of the segment. Although the
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conditions illustrated here are of perpendicular segments, this is not a necessary condition, as demonstrated in Figure
10.

Figure 9 illustrates a rule which can generate wall centerlines from wall outlines for case 1-2 in Figure 8 (L-
shaped intersection), and a design which can be generated using this rule and similar ones. Figure 10 and the
formulas following illustrate some of the relations necessary for the construction.

intersection (element)

intersection (shape)

n-intwithin

intersect

n-intersect

continuous

extension extended_intersection

parallel

skew

perpendicular

projection image

+

set_reduction

trans_closure

×

≤

boundary n-intersection

reduced_intersection

cohyperplanar

transformation

descriptor

Figure 7.  A portion of a dependency network of spatial relations and operations. An arrow from A
to B indicates that the definition of B is dependent upon A. The recursive nature of relations is not
shown here. Definitions with no incoming arrows (on the left of the figure) can be considered
primitives.

1 2 3 4

1-1 1-2 1-3 1-3 1-4

2-2 2-2 2-3 2-3 2-42-3

a) node types

b) wall segments defined by a pair of node types

Figure 8.  a) Wall segment intersection nodes (up to four). b) Some of the configurations of wall
segments defined by pairs of nodes. The dashed line represents the centerline of the wall segment
in question.
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a) b)

* *

Figure 9.  a) Shape replacement rule for wall centerline generation (spatial relations described in
Figure 10 and the text). b) A possible floor plan shape generated from multiple invocations of
rules similar to a), based on the shapes in Figure 8b.

l1

l2

l3

l4 l5

p1 p2

p3p4

p5p6

p7

p8

l6

m

Figure 10.  Shape (with elements labeled) for the 1-2 case of wall centerlines.

We illustrate here a few of the necessary spatial conditions for the L-intersection. It is assumed that the
points in Figure 10 are in the algebra U02, and that the lines are in the algebra U12. First, there are conditions of
parallelism and perpendicularity (specified formally in logic in (Chase, 1996)) in which must be satisfied by certain
wall segments:which must be satisfied by certain wall segments:

parallel(l1,l2) perpendicular(l1,l5)
parallel(l3,l4)

The following conditions set a range of allowed wall thicknesses, i.e. the distance between the two parallel lines.
These are conditions of architectural context, based upon the design and drawing scale. Here, distance is a function
whose value is the perpendicular distance between the two parallel lines:

min_wall_thickness ≤ distance(l1,l2) ≤ max_wall_thickness
min_wall_thickness ≤ distance(l3,l4) ≤ max_wall_thickness

Some elements and relations can be inferred from the explicit conditions. For example, the centerline l6 can be
constructed as shown below. The points p7, p8 and the line m are also inferred. The formula for l6 indicates that it is
constructed in an algebra V12 (labeled lines), with endpoints p7, p8 and label “centerline”:

center(l5) = p8 m = eU12({p1, p4})
center(m) = p7 l6 = eV12({p7,p8}, “centerline”)

The contiguous relation (which here describes lines which share an endpoint) is used to construct the sequence
l4,l1,l5,l2,l3, forming a chain of connected line segments:

contiguous(l4,l1) contiguous(l5,l2)
contiguous(l1,l5) contiguous(l2,l3)
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The following can also be proven from the given conditions:

0 ≤ interior_angle(l1,l4) = interior_angle(l2,l3) ≤ 90°

There are a number of additional required and inferred spatial relations which hold in this example; they have been
omitted here for the sake of brevity.

Identification of Spaces.  An important function of an architectural design interpretation system is the recognition of
spaces. Since architectural spaces are three dimensional, plan drawings cannot always capture their volumetric
qualities. However, they do in general serve as adequate notational devices for representing space. The example here
simplifies the problem by treating elements embedded in a wall (such as doors and windows) as discontinuities in
the wall (where appropriate).

The advantage of the shape algebras over more traditional representations becomes evident here, as
generation of the open spaces involves no more than the basic shape algebraic operations performed on the wall
segments identified in the previous example. Some emergent features are also easily found, a difficult or impossible
task with other representations.

There are several steps to this process, resulting in a figure-ground of wall vs. open space (Figures 11–14).
First, wall segments defined from the construction in Figures 8–10 are transformed into individual regions, then
reduced to a shape W of maximal regions. The shape W is subtracted from its convex hull (the smallest convex
region enclosing the shape), producing a shape S representing the open space in a figure-ground relationship with W.

Figure 11.  Boundary lines (U12) for
all wall segment regions.

Figure 12.  Reduction of wall segment
regions into a shape W of maximal
elements (U22).

Figure 13.  Convex hull of the shape W
in Figure 12.

Figure 14.  The shape S representing
open space constructed by
convex_hull(W) – W .

Emergent subspaces.  While the shape S does represent continuous spaces in terms of maximal regions, in general
we are interested in subspaces of these larger spaces. Although with plan drawing alone we cannot get a complete
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picture of all possible subspaces of interest, we can identify some of them. It should be noted that any subshape of S
which contains non-maximal parts of S as maximal elements qualifies as an emergent subspace. However, there are
an infinite number of these subshapes (Figure 15), most of which are not of interest. Rules therefore need to be
established for the identification of meaningful subspaces.

A common way of identifying these subspaces is to consider the extension of wall segments (and also
ceilings) which are the boundaries of a space. Rules such as those in Figure 16 can be used to construct “virtual
walls”, which are then used as boundary elements for emergent subspaces (Figures 17 & 18). Any two contiguous
subspaces can be combined into a single larger subspace. An additional benefit of this representation of spaces as
regions in U22 is that a room perimeter is represented by the boundary elements of its spatial region. Perimeter wall
lengths and surface areas can easily be computed by forming the product (•) of a region’s boundary elements and the
shape consisting of wall edges.

Figure 15.  Some emergent subspaces of
the shape S, most of which are not of
interest.

* *

* *

* *

Figure 16.  Rules for the extension of
wall segments into “virtual walls”.

Figure 17.  Example with “virtual wall”
extensions added.

Figure 18.  Subspaces constructed from
possible new boundary lines.

Views between spaces.  Among the emergent features that could be identified using the representations described
above is that of views between spaces. Figure 19 illustrates this by defining this feature as a parameterized shape
consisting of portal jamb lines, “virtual wall” lines at these portals, and a region (shaded) which is part of a space.
By varying restrictions upon the parameters, one can identify general vistas between spaces as well as more classical
enfilades characteristic of the designs of Palladio (Stiny, Mitchell, 1978).
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general view
between spaces

axial view symmetrically aligned view
(enfilade)

Figure 19.  Emergent views between spaces defined by portals. Parametric conditions are not
detailed here.

Geographic Information Systems

Geographic information systems (GIS) provide a good testing ground for the spatial relations developed.
Much of GIS deals with two dimensional maps containing simple relations between points, lines and regions. There
is a large body of GIS research dealing with topology and spatial relations. However, planners often tend to focus on
specific features of interest, and design their data structures to represent this closed set of features. Thus, the
possibility of emergent features and properties is limited or nonexistent.

A simple example illustrating the emergent feature accessible uses the definition of a continuous shape, one
in which all elements are “connected” (Figure 20). In other systems, accessibility problems are generally handled by
connectivity graphs which are explicitly constructed for this purpose. Thus, the structure of the map, i.e. its
connectivity relations, must be known before drawing it; emergence is not possible. Here, the graph emerges from
the implicit connectivity relations among the various elements of the shape.

A
B

a)

A B
b)

Figure 20.  Accessibility. a) between regions; b) between points. A is accessible to B because there
is a continuous shape containing A, B and a set of (road) lines.

Other work by the author in the area of GIS (Chase, 1996) has involved a comparison with a typical
relational database implementation of a geographic information system. This study showed that in a typical GIS
relational database system, all information (i.e. features) of interest (roads, rivers, intersections, bridges, and
districts) had to be explicitly entered into the relational tables for points, line segments and polygons. Queries using
the relational algebra tend to be nonintuitive and difficult to formulate (Figure 21a). While the actual computations
using the shape algebraic formulations described here may be similar to those of the relational representation, they
tend to be hidden from the user; the complexity of computation has been moved from the query language to the
inference mechanism. The queries prove to be relatively easy to formulate using such intuitive relations as
boundary, within and intersection (Figure 21b), and allow for the possibility of emergent features, impossible in the
more traditional relational representation.
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Name the intersections that are entirely within districts (not on district boundaries).

a) Relational algebra:

A = πpoint_label(σfeature_type=‘intersection’(point))
B = σleft_polygon≠right_polygon(line)
C = πbeginning_pt(B) ∪  πending_pt(B)
D = A – C
E = πD.point_label,line.left_polygon(D   ><D.point_label=beginning_pt line) ∪

πD.point_label,line.right_polygon(D   ><D.point_label=ending_pt line)
F = πE.point_label,area.feature_name(E   ><E.polygon=area.polygon_label area)

Answer =
πpoint.feature_name,F.area.feature_name(F   ><F.point_label=area.point_label point)

b) Shape algebra:

Ans = { 〈District, Int〉  |
district22(District) &
Int = {I | intersection02(I) & within(I, District) &
¬within(I, boundary(District))}}

Figure 21  Comparison of queries on a GIS database. a) Relational algebraic query; b) the same
query using relations based on shape algebras.

5  IMPLEMENTATION ISSUES

The model introduced in this work has been developed in a descriptive rather than operational manner. By
doing so, we have deliberately not specified data structures or algorithms to manipulate the data, but focused instead
on the logic of the relations between objects. This permits the later modification of a data structure without altering
higher level procedures. If one wishes to develop a computer implementation of the model, the issues of data
structure and computational complexity must be considered.

Computations using shape grammars involve the subshape recognition problem, i.e. the determination of
applicable rule invocations by searching for occurrences of a rule pattern within a design. The number of applicable
subshapes can range from none to an infinite number, in general growing combinatorially with the number of
maximal elements in a shape. Therefore, a goal is to reduce the set of possible rule applications to a finite,
manageable number. Research by Tapia (1996) focuses on presenting a manageable number of choices to the
designer when computing with shape grammars. Several ways to accomplish this include placing restrictions on the
computational mechanism, numerical representation of shapes, and rules and their application.

Thus, implementation invariably requires compromises in the areas of model soundness and completeness
by restricting the types of queries and data objects permitted. In addition, the generality of some relations may be
sacrificed for algorithm efficiency. Despite these potential problems, it is the author’s belief that developing a model
using abstract data structures has great potential.

It is expected that a deductive database (Gallaire, Minker, 1978) will be used for a prototype
implementation of the model described here. Deductive databases combine aspects of logic based systems as well as
database systems. A cursory examination of the relations developed here and the anticipated query types indicates
that the limitations of deductive databases may be acceptable with only minor modifications to the model.
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6  CONCLUSIONS

The combination of shape algebras and symbolic logic has been shown to be a powerful tool in the
specification of design systems. This was done by constructing a model of shape and spatial relations from first
principles of geometry, topology and logic. The model improves upon previous efforts in several ways:

• Shape algebra representations are superior to those of more traditional “kit-of-parts” systems in that they require
minimal predetermination of structure and support direct manipulation of emergent features.

• The model here provides a generalized parameterization schema for shapes and spatial relations of any
dimension and description. This improves upon previous, less parameterized representations of shape algebras
by the use of logic in a precise manner, rather than by drawing or natural language description of parameters.

• Spatial relations are constructed in a layered approach, beginning with base primitive operations, and building
upon them to generate high level relations and operations which are natural to design. This method allows one
to examine formal properties of relations and identify issues which may affect implementation. It also proves to
be a natural and intuitive way of development.

• Use of a logic formulation allows one to focus on high level knowledge, not on low level data structures and
implementations.

• Logic formulations are amenable to computer implementation:  logic programs and deductive databases are
examples of programming paradigms which support subsets of first order logic formulations.

In summary, this work demonstrates that by concentrating on the knowledge to be modeled and not directly
on implementation, more powerful models of design can be developed. The potential for implementing these models
with minimal modification of the model semantics appears to be great. It is hoped that future research will adopt this
approach (focus on the power of the formal model), thereby overcoming the traditional bias of favoring
implementation at the cost of representation.
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